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Exact solution of Kauffman's model with connectivity one 

H Flyvbjerg and N J K j m  
The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen 
0, Denmark 

Received 27 April 1987 

Abstract Kauffman's model is a randomly assembled network of Boolean automata. Each 
automaton receives inputs from at most'K other automata. Its state at discrete time f + 1 
is determined by a randomly chosen, but fixed, Boolean function of the K inputs at time 
f. The resulting quenched, random dynamics of the network demonstrates two phases: a 
frozen and a chaotic phase. We give an exact solution of the model for connectivity K = 1, 
valid everywhere in the frozen phase and at a critical point, valid for finite as well as for 
infinite networks. We discuss the network's critical behaviour and finite-size effects. The 
results for the frozen phase presented here complement recent exact results for the chaotic 
phase obtained for K = 5. 

1. Introduction 

Exactly sovable models enjoy a special status wherever mathematical modelling is 
done. Though rare, they play a central role in our understanding both of the systems 
modelled and of all related, less solvable models. They often also serve as non-trivial 
starting points in approximation schemes, for non-solvable models. As such, .the 
existence of a solvable model may be of crucial value for further model building. 

Simplified models are a vastly more abundant commodity. As such, Kauffman's 
model was originally introduced to model the complex genetic regulatory system that 
guides cell differentiation in embryonic development [ 1-41. It has recently received 
increased attention from workers in the theory of automata, in neural networks and 
in disordered systems [5-181. Viewed as a network of automata, the model is non- 
homogeneous and infinite dimensional, which makes it more complex than the cellular 
automata studied by Wolfram and others [19]. Viewed as a formal neural network 
the arbitrary dependence on inputs makes it more complicated than, for example, the 
Little-Hopfield model [20-221. Viewed as a disordered system, the absence of tem- 
perature and the deterministic dynamics makes the model more tractable than spin 
glasses, e.g. systems of finite size have a multivalley structure [14]. 

A number of properties of Kauffman's model with connectivity K = 03 have recently 
been obtained exactly [15]. The highly non-trivial results describe the model deep in 
its chaotic phase (see below). In the present paper we solve the model for connectivity 
K = 1. The equally non-trivial results describe the model in its frozen phase. By 
varying a parameter q of the model we can follow the behaviour of our exact results 
all the way to the phase boundary. We have reasons to believe that our exact solution 
can be made the starting point for an approximation scheme describing the model for 
any connectivity K anywhere in the frozen phase, and possibly across the phase 
boundary and slightly into the chaotic phase, i.e. the critical behavour might be 
described in this scheme. 
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Now let us describe Kauffman’s model. Kauffman’s model consists of a network 
of N Boolean variables U, ,  i = 1 , .  . . , N,  which develop in discrete time according to 
a deterministic dynamic law: the value of U, at time t + 1 depends on the value of at 
most K variables at time t :  

U,(?+ 1) = 1 ; ( q , ( , d t L  a,,,,,(t), . * . ,  %,,,(f)). (1.1) 

Like N, the connectivity K is a parameter of the model. A sample of such a network 
is defined by giving the connection graph ( j , ( i ) ,  . . . , j ,  ( i ) ) , = l ,  . N  and the Boolean 
functions (l;),=l, ,N. The connection graph is obtained by choosing j , ( i ) ,  
j , (  i ) ,  . . . , j ,  ( i )  at random between 1 and N, independently of each other and of choices 
for other values of i. So the connection graph is a random, directed graph with at 
least one and at most K different edges j l ( i ) ,  . . . , j ,  ( i )  terminating at the vertex i ;  
i = 1,  . . . , N. The Boolean functions 1; are also chosen at random: a third parameter 
p is introduced by choosing 

1 with probability p 
0 with probability 1 - p  f ; ( a l , .  . . 9 (1.2) 

for any input (a , ,  . , . , U, ), with no regard for the value of 1; for other inputs. Once 
a sample is defined, its connection graph and Boolean functions are kept fixed, and 
the consequences of the resulting quenched, random dynamics may be studied. Usually 
only sample-averaged quantitites are of interest. 

In $ 2 we describe our strategy for solving the model. It is shown that typically 
only a few, rather short, so-called information conserving loops in the connection 
graph determine the partitioning of configuration space into basins of attraction for 
limit cycles. In 0 3 we calculate the probability P for a given distribution of loops in 
the connection graph. Section 4 gives the probability Q for information conserving 
loops. Q is a fundamental quantity in our calculations on the model, and we believe 
that most quantities one may think of can be calculated along the lines we use, starting 
with our expression for Q. In 0 5 we obtain a rapidly converging series for the 
probability g (  W) that a randomly chosen configuration of the variables ( u ~ ) , = ~ , , , . ,  

belongs to a basin of attraction of relative size W. With Y p  denoting the probability 
that P randomly chosen configurations belong to the same basin of attraction, we also 
obtain the probability distribution I I p  for Y p  as a rapidly converging series. Terms 
in these series are calculated one by one, starting with the dominant and simpler ones. 
This rather pedantic section spells out what goes on in a typical sample of the network. 
We suggest the reader reads as far as he benefits from it, and then jumps to the end 
of the section. Our technique is vaguely reminiscent of the high-temperature expansion 
of lattice spin theories, or the strong coupling expansion of lattice gauge theories. Our 
series converge, however, in the entire phase under study. In § 6 we even find that in 
any interval not containing zero on the W or Y p  axis, the series for g (  W) and II,( Y p )  
contain only a finite number of terms. This makes it possible to derive very narrow 
bounds on expectation values computed from the exact probability distributions g (  W) 
and IIP( Y p ) ,  which is done in § 7.  Section 8 discusses a critical point found at the 
end of a parameter interval, much like the critical point of one-dimensional spin 
systems at zero temperature. Section 9 discusses effects of finite system size N. Section 
10 contains our conclusions. 

While the work presented here was progressing, we received a preprint by Hilhorst 
and Nijmeijer [ 231, which amongst other interesting results for Kauffman’s model gives 
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an exact expression for the time evolution of the overlap between two configurations 
in the case of connectivity K = 1. 

2. Strategy for a solution 

Consider Kauffman’s model with connectivity K = 1. Let N be the number of Boolean 
variables in the model. Since each variable receives its input from one variable chosen 
at random amongst all N variables, the connection graph is determined by a random 
map of a set of N points into itself [l]. Several variables can receive input from the 
same variable; let us call it their immediate ancestor, and call them its immediate 
descendants. By ‘descendant’ we shall mean any immediate descendant of an immedi- 
ate descendant..  . of an immediate descendant. Similarly, by ‘ancestor’ we shall mean 
any immediate ancestor of an immediate ancestor. . . of an immediate ancestor. Since 
every variable has one and only one immediate ancestor, but can have any number of 
immediate descendants from 0 to N,  any of the N variables of Kauffman’s model with 
connectivity K = 1 lies either on a generation tree or on a loop. A loop occurs when 
a variable is amongst its own ancestors. Loops can occur with any length between 1 
and N, the length being the number of variables on the loop. Since all variables have 
ancestors, and there is only a finite number N of variables, at least one loop occurs. 
All trees are rooted in loops. So much for the connection graph. 

The value of any variable a, at time t + 1 is determined by the value of its immediate 
ancestor a,,,, at time t via a Boolean function f;: 

a,(t+ 1) =f;(a,(,,(f)). (2.1) 

So, no matter what the initial configuration ( U ~ ( O ) ) , = ~ ,  ,h. is, after at most N - 1 time 
steps the information contained in ( U , ( O ) ) , ~ ~ ~ ~ ~ ~  is lost, and ( c ~ , ( f ) ) , = ~  , N  is, for t 2 N, 
determined by the functions (A),==,, and (a,(0)),eloops. Furthermore, any informa- 
tion in (~,(0)),,loo,, which is placed on loops containing one or more of the constant 
functions f;( a )  = 1 for a = 0 , l  or f;( a )  = 0 for a = 0 , l  is also lost after at most N time 
steps, and (a,( t ) ) , E l o o p  is, if the loop contains a constant function f;, for t 2 N entirely 
determined by the functions (f;),E,oop. Thus, in our search for the probabilistic laws 
governing the behaviour of the network, we are led to consider only loops in the 
connection graph, and only such loops that contain no constant functions f;. For time 
t 2 N all variables a,( t )  on such loops and on the trees rooted in them, are determined 
by (a,(0))IEloOp and the functions J ;  on these loops and trees. 

The probability for either non-constant function f ; ( a )  = a and f ; ( a )  = not (a)  is 
p(1 - p ) .  So the probability that a loop of length L contains only these functions is 
[ 2 p ( 1 - p ) l L .  For any value of p between zero and one this probability is less than 
2 - L ,  showing that only short loops have a non-vanishing probability for not containing 
a constant function. So we have the qualitative result that, even for N + w ,  the 
configuration ( ~ , ( t ) ) , = ~  .“ri for t 2  N depends only on a few of the variables a,(O) in 
the initial configuration, those on some short loops in the connection graph. Let us 
call these variables the relevant ones. For a given sample (f;,j( i)),=, , of the network 
the number of different cycles in time that the relevant variables can form is also the 
number of different basins of attraction for this sample. The number of initial configur- 
ations that fall on an attractor is just the number of initial configurations with relevant 
variables falling on the same cycle. 
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From the scenario just developed, it is obvious that there must be sample-to-sample 
fluctuations of a number of quantities in the thermodynamic limit N + m ,  simply 
because the behaviour of a macroscopic number of variables is fully determined by 
the microscopic, hence fluctuating, number of relevant variables and functions 
(U,, f;, A i ) ) ,  relevant. 

Now let us calculate the probabilities for the situations described above. 

3. P(n), the probability for loop distribution ( I I ~ ) ~ = , , ~ , . , .  

Consider the random map of a set of N points into itself. For a sample of this map 
let nL denote the number of loops of length L, L = 1 , 2 , 3 , .  . . . Below we prove that 
the probability P(n) for the occurrence of a given distribution ( r ~ ~ ) ~ = ~ , > , , , ,  of loop 
lengths is 

N! - 5 c  n* 
N ( N - n * ) ! N "  L = l  n,! 

P ( n )  = - - 

where 
e= 

6 =  nLL. 
L= 1 

(3.2) 

For later convenience we have used infinity instead of N as the upper limits in the 
product in (3.1) and the sum in (3.2). This does not alter their values since 1/(  N - n ) !  = 
0 for n = N + l , N + 2 ,  . . . .  Notice also that P ( n ) = O  if nL=O for all L, so we can 
include this value for n in sums over n without altering their values. 

The proof of (3.1) is as follows. The number of different ways we can partition a 
set of N distinguishable objects into nL sets containing L objects, L = 1 ,2 ,3 ,  . . . , and 
the complement of these n L  sets, is 

N! 
(3.3) 

When the random map is applied to a set of N objects partitioned this way, the 
probability that each of the nL sets of L objects map into themselves to form a loop is 

(3.4) 

Finally, the probability that the random map applied to a set of N objects forms loops 
that all are entirely inside a subset Y of n* objects is just the probability that repeated 
application of the random map to any element in the complement CY iterates to an 
element in Y (where it stays under further iterations, when we have assumed that 2 
is entirely made up of loops). This probability is n*/ N. This is not obvious, but calling 
this probability P ( 6 ;  N )  and applying the random map repeatedly to any element in 
CY, one gets the recursion relation 

N - r i  P ( i i + L ; N )  
L = l  N ~ ( N - ~ * - L ) ! '  

P ( 6 ;  N ) = ( N - c - 1 ) ! 6  C (3.5) 

Equation (3.5) expresses that any element x in C 2  by L applications of the random 
map, LE { 1,2,  . . . , N - n*}, should iterate to an element in Y and that any element y 



Exact solution of Kaufman's  model with connectivity one 1699 

in CA?\{trajectory of x }  should iterate to an element in A?u {trajectory of x}. Equation 
(3.5) is solved by 

(3.6) 

The product of the combinatorial factor (3.3) and the probabilities (3.4) and (3.6) 
gives (3.1). 

Since at least one loop must occur in the random map, P ( n )  is a normalised 
probability: 

P ( 6 ;  N )  = f i /  N.  

f P ( n ) = l .  
n , . n  z . . . .=O 

This may also be shown directly: (3.1) and (3.2) give 

(3.7) 

[ ( l / L )  exp(iaL)]"~ - exp( - i a x )  n 
L = l  nL ! 

X 

Using 

1 - - f 
fi [( 1/ L) exp(iaL)]"i 

n , , n : ,  . . .  =O L = l  nL ! 1 -exp(ia)  

we find 

For N+co (3.1) becomes, to leading order in N, 

f i  (1/L)"L 
P(n)=-exp(-f i2/2N) fl -. N L = I  n,! 

(3.9) 

(3.10) 

(3.11) 

The exponent in (3.1 1) makes f i  >> t'N highly improbable. The factor f i  is linear both 
in nL and in L. The final product, however, strongly suppresses large values of nL by 
a factor l / n L !  and large values of L by a factor L-"L. The balance of this is that 
P( n )  = O( 1 /  N )  in two cases. One is for f i  = O( 1). The other is for nL = 0 for all L 
larger than 0 ( 1 )  except for a single value of L, which must be less than O ( J N ) ,  and 
have nL = 1. For all other distributions ( n L ) L = 1 , 2 ,  of loop lengths is P ( n ) < O ( l / N ) .  

The expectation value for nL can be calculated in a way similar to that which leads 
to (3.10). One finds 

1 
= - exp( - L i / 2 N )  + O( 1 /  N ) .  

LO 

We see that A,=l ,  r i L a l / L  and i i L = O  for L > O ( J N ) .  

(3.12) 
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4. Q(m), the probability for distribution (mL)L=1,2 , . . .  of information conserving loops 

Let Q ( m )  denote the probability of having ( mL)L=l ,2 . . , ,  information conserving loops 
of length L, L =  1,2, .  . . , in the connection graph of Kauffman's model with K = 1. 
Below we prove that 

where 

For N+cc to leading order in N, (4.1) becomes 

(4.2) 

Notice that Q ( m )  in (4.3) is a product of independent probability distributions, one 
for each loop length L. 

The result (4.1) may be found in the following way: in order to have mL information 
conserving loops of length L we must have at least mL loops of length L, i.e. we must 
have nL such loops, nL 2 m L ,  L = 1,2,3, .  . . . Thus Q ( m )  is a sum over distributions 
( n L ) L = 1 , 2 , . . .  satisfying nL 3 mL of the probability P ( n )  times the probability that exactly 
mL of the n L  loops of length L are information conserving. The probability that a 
loop of length L is information conserving is the probability that all of its functions 

are 'identity' or 'negation', i.e. [2p(l -p) lL.  So the probability that a loop does not 
conserve information is 1 - [2p( 1 --p)lL. Thus 

Q ( m ) =  n l a m l  c n 2 = m 2  c . . . p ( n )  L = I  fi ( ;)[2p(l-p)l~mL 

x{l  -[2p(l-p)lL}"'-"L. (4.4) 

Inserting (3.1) in (4.4) and proceeding in a way similar to the one leading to (3.10), 
we arrive at the formula (4.1). 

For N + a  the factor N ! / [ ( N - A ) ! N " ]  in (4.1) equals exp(-A2/2N) to leading 
order in N - I .  However, since 2p ( l -p )G;  for ~ E [ O ,  13, the factor [2p(l  -p)]' in 
(4.1) makes Q ( m )  vanish unless A = O( 1). So to leading order in N-' we have (4.3). 
A useful formula is 

(4.5) 

Q is a normalised probability distribution: 
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5. Approximating sequences for g( W) and ll,( Y p )  

Introduce in (4.3) 

q = 2P(l -P) (5.1) 

where q is the probability that a function f; is information conserving (i.e. either the 
identity or negation) and (4.1)-(4.3) are valid for any value of q in [0, 11. Equation 
(4.3) then becomes 

with h as defined in (4.2). For p in [0,1] q belongs to [0, f] and consequently Q( m )  
rapidly becomes small with increasing h. So, if we are satisfied with approximate 
results, we only have to consider a finite set of configurations m of information 
conserving loops. The approximation involved can be made arbitrarily good by 
considering larger finite sets of loop configurations. As an example, in this section we 
shall consider loop configurations m with probability Q( m )  > 0.005. These configur- 
ations of information conserving loops are for any value of q in [O,;] contained in 
the set of ten configurations satisfying h s 4. 

Within our approximation, we can calculate the relative frequencyf( W) with which 
a basin of weight W occurs or, equivalently, the normalised probability g( W) = Wf( W) 
that a randomly chosen configuration of variables ( v ~ ) ~ = ] ,  . ,hi belongs to a basin of 
attraction with weight W. Furthermore, since for a given configuration of loops and 
input functions we calculate the weights W, themselves ( s  being an index enumerating 
the basins of attraction occurring for that configuration), we can also evaluate the 
quantity 

Y p = C  wp 
4 

(5.3) 

and the probability distribution H p  for Yp.  For P a positive integer, Y p  is the probability 
that P randomly chosen configurations belong to the same basin of attraction. 

Now let us show how this is done. 

5.1. The case m = (0, 0, . . .) 
This case occurs with probability 

Q ( O , O ,  . . .) = 1 - q. (5.4) 
Since it describes a network with no information conserving loops, any initial configur- 
ation ( v ~ ( O ) ) ~ = ~ , .  . , N  will in time develop to the same configuration. So there is only 
one basin of attraction, which then has weight W = 1. Consequently Y p  = 1. 

This case contributes to g( W) with an additive term (1 - q )  6 ( W - l), and to 
I Ip( Y p )  with an additive term (1 - q ) 6 (  Y p  - 1). 

5.2. The case m = ( 1 ,  0, . . .) 
This occurs with probability 

(5.5) 
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I t  describes a network with one information conserving loop of length one. The one 
variable akl in this loop receives input from itself 

(5.6) 

f, = ‘identity’ with probability f ,  and consequently any initial configuration 
( ~ , ( 0 ) ) , = ~ ,  , will develop in time to a configuration determined by the constant value 
of ab. This value is zero for half of all possible initial configurations, and one for the 
other half. Consequently configuration space is split with probability f (  1 - q ) q  into 
two basins of attraction of equal weights: W1 = W2 = +. It follows that Yp = 2($)‘. The 
attractors in both basins are fixed points. 

f, = ‘not’ with probability i, and consequently any initial configuration will develop 
in time to a 2-cycle of configurations characterised by (+lo ( t  + 1) =not  (a,( 1)). So there 
is only one basin of attraction, W = 1, Yp = 1. 

This case contributes to g (  W) with i ( l  - q ) q ( S (  W - i ) +  S (  W- 1)) and to I l p  with 

a,( t + 1 ) = fJ a*( f 1 1. 

t ( l - q ) q ( S ( Y P - 2 ( t ) P ) + S ( Y P - 1 ) ) .  

5.3. The case m = (0, 0, 1, 0, . . .) 
This occurs with probability 

Q ( O , O , l , O  , . . .  ) = i ( 1 - q ) q 3  (5.7) 
and describes a network with one information conserving loop containing three vari- 
ables; call them a,, , all and at3. They receive inputs from each other such that 

( 5 . 8 )  
The functions f;, , f;? and f;, can all be ‘identity’ (with probability $), one can be ‘not’ 
(with probability i), two can be ‘not’ (with probability i), or all can be ‘not’ (with 
probability $). 

When f;, =f;, =f;,= ‘identity’, any initial configuration (al(0))8=l, , N  with (a,,(O), 
a,?(O), a , , (O) )  = (1, 1, 1) develops in time to the same final configuration. Any initial 
configuration with (atl(0), a, , (O) ,  a,,(O)) = (1, 1,0), (0 ,  1, 1) or ( l , O ,  1) develops in time 
to the same 3-cycle in configuration space. 

Configurations with (a[,(O), a ,> (O) ,  a,,(O)) = (0 ,  0, l ) ,  (1,0,0) or (0, 1,O) develop to 
another 3-cycle, and configurations with (a,,(O), a,,(O), ~ ~ ~ ( 0 ) )  = (0 ,  0,O) develop to the 
same final configuration. Thus we have four basins of attraction with weights W = Q, 

When two of the functions are ‘identity’ and one is ‘not’, one finds in a similar 
way that there are two basins of attraction with weights W = a and f ,  corresponding 
to an attractive 6-cycle and 2-cycle, respectively. Hence Yp = (:)‘+ (i)‘. 

When one function f;, is ‘identity’ and two are ‘not’, one finds weights W = $, $, i 
and i, hence Yp = 2(;)‘+2(;)‘. 

When all functions f;, are ‘not’, one finds W = a and a, Y,  = (a)‘+ (a)‘. 
Summing up, one gets a contribution to g (  W )  equalling 

(+I)*] ( t + 1) =.A!+, ( Cl# ( t )  1. 

1 1  8 ,  and $. Hence YP=2($)P+2(i)P,  

f ( l - q ) q 3 [ $ 6 ( W - $ ) + $ 6 ( W - : ) + ~ 6 ( W - ~ ) + ~ S ( W - a ) ]  

b(  1 - q ) q 3{ 6 [ Yp - 2 ( $ )  - 2( i) ‘1 + 6 [ Yp - ($) - (a)  ‘I}. 
and a contribution to IIp equalling 

Generalising from the case just studied, it is not difficult to see that the way in 
which a given loop with given input functions breaks configuration space into basins 
with a certain distribution of weights does not depend in detail on the distribution of 
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input functions, but only on whether the number of functions 'not' occurring is even 
or odd. If it is even, the L variables on an information conserving loop of length L 
will go through a cycle with a period that is a divisor in L. If it is odd, they will go 
through a cycle with a period that is a divisor in 2L, and not a divisor in L. These 
observations simplify calculations considerably. 

5.4. The case m = ( 1 ,  0, I ,  0, . . .) 
This case describes a network with two information conserving loops, one containing 
one variable, another containing three. We have just seen how one loop containing 
three variables can split configuration space into basins of attraction in various ways. 
When another loop containing one variable ub and function f, = 'identity' is added, 
each basin of attraction created by the loop of length three is split into two basins of 
equal size, one for each of the two constant values u, can have. If, on the other hand, 
f, = 'not' then cr,( t )  describes a 2-cycle, which can have only one (two different) phases 
relatively to a cycle with odd (even) period described by the three variables on the 
loop of length three. So for f, = 'not' a basin of attraction created by the loop of length 
three is not split any further (is split into two basins of equal size) if the attractor is 
a cycle of odd (even) period. The upshot of this is that the case m = ( 1 , 0 , 1 , 0 ,  . . .) 
contributes to g (  W) with 

and to IIp with 

Going through all ten configurations m satisfying A S 4,  one finds approximate 
expressions for g (  W) and IIp( Yp) .  They are of the form 

(5 .9)  

and 

n P ( y P ) = x  r k S ( y P -  y P , k ) -  (5.10) 

wi and g, are given in table 1 ,  Yp,k and r k  in table 2.  In actual practice we have used 
a computer program and treated A s 23. 

I I p  given in (5.10) is reminiscent of the functions I I p  found for randomly broken 
objects in the mean-field theory for spin glasses and in kauffman's model with K = CO 

[ 1 6 ] .  The mean-field functions have an infinite set of singular points at Yp = ( l / n ) ' - ' ,  
n = 1 , 2 , .  . . . The locations of these singular points do  not depend on the parameter 
y occurring in the mean-field theory for spin glasses, just like Yp,k in (5.10) does not 
depend on the parameter q. The exponent of the singularity, on the other hand, does 
depend on y,  but not on P, just like 7 r k  in (5 .10)  depends on q, but not on P. 

The probability distributions in (5 .9)  and (5.10) are normalised to unity in principle. 
When approximated as in this section one finds 

k 

r i  
(5.11) 
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Table 1. The weights W,, where g( W )  has support, and the probabilities g, that a randomly 
chosen configuration belongs to a basin of attraction with weight W , .  g , / ( l  - 4 )  is a 
polynomial in x = 4s. The table is infinite, so to truncate it somewhere we have dropped 
all powers of x larger than seven. The polynomials given are exact for W, = 1, a,  i, :, A, 
4 and $. The results presented in the figures of this paper included powers of x up to 23. 
The sum of coefficients of individual powers of x (i.e. x " )  add up to 2" because g( W )  in 
(5.9) is a normalised probability distribution. 

w, g , / ( l - q )  with x = f q  

1 l + x +  x2  
3 x 3  

3 x'+3x4+2x5 
- 5  3x5 
I x2+ 3x3+  5x4+4x5  
- 3 x 4 + 5 x 5 +  9x6+ 4x7  
5 3 x 5 +  9x6+ 6x7 

8 x 3 + 4 x 4 + 8 x 5 +  8x6 
Gi 9x7  
3 x s +  13x6+20x7 
5 3x6 + 15x' 
- I x4+5x5+ 13x6+ 12x7 
- 7 9 x 7 + .  . ' 

2x6+ 22x7 i. . ' 
- 5 3 x 7 + .  ' ' 
- 1 x'+ 6 x 6 + 1 8 x 7 + . . .  
- 3 2 x 7 + ,  ' ' 
- I X 6 f  7 X 7 t . "  
- 1 x7+.  . . 

For W < &, x occurs only raised to powers larger than seven. 

a 
I 
2 

s 
x + 2 x 2 +  2x3+ 2xJ 

16 

a 
16 

55 
I 

7 

37 
Gi 

16 

128 
3 
B 
128 

32 

1 2 8  

64 

I28 

and 

(5.12) 

Since q s i  the approximation of this section misses less than 3% of the total prob- 
abilities in g and nP. 

In the next section we prove that this missed probability is located close to zero, 
and that our approximate expressions for g (  W )  and I I p  ( Y p )  are exact for W and Yp 
away from zero. This leads to narrow bounds on and Y" in 0 7. 

6. Some exact results for g( W )  and n,( Y p )  

The heuristic derivation of § 5 illustrates well the mechanisms at play, but misses some 
useful results for g (  W) and I I p (  Y p ) .  They are derived here. 

A given distribution m = ( m L ) r = 1 , 2 , . . .  for the number of information conserving 
loops of length L leaves us with h relevant variables, h = Zr=, Lm,. Each of the 2' 
different configurations that these relevant variables can be in, can be realised by 2N-' 
different configurations of the entire set of N variables. These 2N-' different configur- 
ations all belong to the same basin of attraction, since they only differ in the value of 
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Table 2. Column one: the probabilities Yp,A, where n,( Y p )  has support. Column two: 
the values of Yp.A for f = 2 ,  see also figure 4 and 5 .  Column three: the f-independent 
probabilities r A  that a random sample of the network has Y p  = Yp,A. rk/(l - 4 )  is a 
polynomial in x = fq. The table is infinite, so to truncate it somewhere we given only the 
first twenty entries, arranged according to decreasing values of Y2,A .  For q <+ they contain 
99% of the probability in I I p .  The sum of coefficients of individual powers of q add up 
to one because n P  in (5.10) is a normalised probability distribution. 

5 s 
1 

3 

5 
16 
19 
64  

I 
4 
27 
I28 
3 
16 
23 
I2X 
5 

32 
19 
I28 

B 
- 

- 

- 

- 

- 

- 

- 

I 

I5 
128 
7 

22 I 
2048 

27 
256 

3 
32 

16384 
23 
256 

E 
- 

B 
- 
- 

- 
1619 
- 

. . .  . . .  

their irrelevant variables. Any configuration, the relevant variables of which go through 
a cycle of period c, belongs to a basin of attraction containing ~ 2 ~ - "  different 
configurations, i.e. a basin having weight 

w = c 2 - " .  ( 6 . 1 )  

From ( 6 . 1 )  we learn four things. 
(i). The weight of a basin of attraction is proportional to the period c ofthe attractor. 

The constant of proportionality is given by the number of relevant variables A of the 
sample under consideration. This result is implicitly used in 0 5, where also the 
probability for c was found for given A. 

(ii) The weight of a basin of attraction is a rational number and the denominator 
is a power of two. 

(iii) For given A, the smallest weight possible is 

wmi"(A) = 2-". ( 6 . 2 )  

It is realised by fixpoints in configuration space. 
(iv) The largest weight possible for given A is a decreasing function of A satisfying 

( 6 . 3 )  Wm,,( A )  < 2 x 2-"'> for r?~ > 7 .  
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The proof of (6.3) falls into two parts. The first part goes as follows. From (6.1) 
it is clear that 2” Wmax( fi) = cmax( $I), where c,,,( 61) is the longest cycle possible with 
6I relevant variables. cmax( fi) is found by the following considerations. 

Consider an information conserving loop of length L. Let it be equipped with an 
odd number of input functions ‘not’. Then by a judicial choice of initial configuration 
for the variables on this loop their time development will describe a cycle of period 
2L. This is the longest period possible for variables on a loop of length L. If we have 
mL loops of length L, mL> 1, the longest period possible for all the Lm, variables on 
these loops is still 2L. If, however, we also have information conserving loops of other 
lengths, say L’, then the longest period possible for L+ L’ variables on two loops of 
lengths L and L’ is the least common multiple of 2L and 2L’:  L C M ( ~ L , ~ L ’ )  = 
2 LCM(L, L’).  This is easy to see, and easy to generalise to the result 

cmaX($)=2 max L C M ( L ~ ,  L ~ ,  . . . , L,,)IL,EN,C L, = 61 . (6.4) 

The second part of the proof of (6.3) consists in finding an upper bound for the RHS 
of (6.4). This is a problem of ‘combinatorial optimisation’ which is treated in the 
appendix. 

In Q 5 we calculated all the contributions to g( W) and np( Y p )  from samples having 
6I s 4. We neglected all contributions from samples with 6 2 5 .  The latter contribute 
to g (  W) only in the interval [0, WmaX(5)] since WmaX(61) is a decreasing function of 
6. Consequently, samples with 61 5 contribute to n,( Y,) only in the interval 

Thus we see that the expressions obtained for g( W) and IIp( Y p )  in § 5 are exact 
for Wmax(5) < W s 1 and Wma,(5)p-’ < Yp  s 1. We have improved these results using 
a computer program to calculate g( W) and nP( Y,) exactly in the intervals 0.0002 < 
W s  1 and (0.0002)p-1 < Y p  s 1 corresponding to 6I s 23. 

Figure 1 shows g (  W) for q = 0.2, 0.5, 0.8 and 0.99. Its most characteristic feature 
is of course the delta function spectrum with support at W = 1, i, 4, i, &, . . . , independent 
of q. We also see how g (  W) approaches 6 (  W) for q + 1, though this is easier to see 
in figure 2, and even more so in figure 3. Figure 2 clearly shows the accumulation of 
points of support at W = 0. This accumulation makes it possible for q = 1 to be a 
critical point, as described in § 8, because it makes it possible to shift the total probability 
in g( W) towards W = 0 as q increases, even though g ( 0 )  = 0 for all values of q < 1. 
Figure 3 shows the integrated probability 

{ I I 

[O, ( ~ m a x ( 5 ) ) ~ - ’ I .  

int g (  W) = d W’ g( W’) (6.5) I,” 
for q = 0.2,0.5,0.8 and 0.99. Here it is even clearer how the probability g (  W) + 6(  W), 
hence int g (  W) + e(  W), for q + 1. The broken curve represents 

(6 .6 )  int g,( W) = 1 - (1 - W)’12 

corresponding to 

gs( W) = 1/[2(1- W)‘/2] (6.7) 
which is the exact analytical result for Kauffman’s model with K =CO, and any finite 
value for p [15].  This is the only other case for which the model has been solved 
exactly. For these parameter values one is as far into its chaotic phase as one can 
possibly come, while for K = 1, q finite, one is in its frozen phase (see Q 8 and 
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Figure 1. g (  W )  for ( a )  q = 0.2, ( b )  q = 0 5 ,  ( c )  q = 0 9 and ( d )  q = 0 99 g is a sum of 
delta functions. Its points of support do not depend on q, and accumulate at W = 0 
g ( W ) + S ( W )  for q + l  

- 

IC I 

[ 10, 12, 17,231). So it is not surprising that int g,( W )  resembles no int g( W ) ,  whatever 
the value of q. 

Figures 4 and 5 show 11( Y )  for q = 0.2, 0.5, 0.8 and 0.99. Like g( W ) ,  11( Y )  has a 
characteristic delta-function spectrum, the support of which is independent of q. The 
II spectrum is denser than that of g because Y = E, W, assumes more different values 
than does W,. Figure 6 shows the integrated probability 

int 11( Y )  = d Y' 11( Y')  (6 .8)  

for q = 0.2, 0.5, 0.8 and 0.99. We see that int 11( Y )  + e( Y ) ,  hence 11( Y )  + 6(  Y )  for 
q + 1. This is also seen in figures 4 and 5 .  

JOY 

7. Exact and narrow bounds on expectation values 

We have calculated narrow bounds on expectation values with respect to the exact 
probability distributions g and I I p  using our approximate expressions for these func- 
tions and our knowledge of how they approximate. Let P ( x )  be a normalised probabil- 
ity distribution in the unit interval and let p ( x )  be a non-negative function that 
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Figure 4. n( Y )  for ( a )  q=O.2 ,  ( b )  q = O . 5 ,  ( c )  q =0.8 and ( d )  q =0.99. n is a sum of 
delta functions. Its points of support do not depend on q and accumulate at Y = 0. 
n ( Y ) - , S ( Y )  for 4'1. 

r 
0 

approximates P ( x )  from below: 

lo' d x  P ( x )  = 1 

O s p ( x ) s  P ( x )  

A x )  = P ( X )  

v x  E [O, 11 

v x  > xo E [O, 13. 

Define for later use 

E = 1 - l 0 ' d x p ( x )  = 1; d x ( P ( x )  - p ( x ) ) .  

Then it is easy to show for any non-negative function f ( x )  that 

I,' d x p ( x ) f ( x )  I,' d x  P ( x ) f ( x )  

(7.1) 

(7.4) 
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Figure 5. Same as figure 4, but with logarithmic axes. 

1 
/ 

.A- 
0 0.5 

Y 

Figure 6. The integrated probability int n( Y )  =I,’ d Y‘n( Y‘) for q = 0.2 (A), 0.5 (B), 0.8 
( C )  and 0.99 (D). int II( Y )  + e( Y) for q + 1. 
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Using (7.5) one finds that 

F = F2 = lo' d Wg( W) W = lo' d Y 112( Y )  Y (7.6) 

satisfies 

(7.7) P + ~ X  1 0 - ~  for qs 1. 

A similar result is easily obtained for Fp, P arbitrary. For 
- 
Y 2  = jo' d Y 11( Y )  Y 2  

we have found 
- _ -  
Y2(23) < Y' < Y2(23)+ q24 Wm,,(23) 

- 
s Y2('3) + 4  x lo-* for q s  1 
- 

and conclude that a2( Y) = Y 2 -  F2 as upper bound has 

a'( Y)"3'+4X lo-* 

Y)('') - 4 x 

and as lower bound has 

(7.8) 

(7.9) 

The bounds on expectation values derived in this section are more narrow than 
the tip of the pen used to draw figure 7. This figure then shows exact results. The 
upper curve in the figure is Y(q) ,  the lower curve is Y4(q).  Between these two curves 
are two other curves practically, but not exactly, on top of each other, Y,(q) and 
Y2(q) .  The vanishing of all these expectation values at q = 1 is the subject of the next 
section. 

- 

, 
0 0.5 

4 
- 

Figure 7. y(q), y,(q), y,(q) and Y 2 ( q )  against q. is the upper curve, y,(p) the 
lower curve. In between are the two other curves practically, but not exactly, on top of 
each other. 
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8. The critical p i n t  at q = 1 

In 9 4 we obtained Q( m) in the thermodynamic limit N + 00. In this section we consider 
a second limit, q + 1. We find that 

g( W) = W) for q = 1 (8.1) 

U,( Y p )  = 6( Y p )  for q = 1. (8.2) 

This follows from the normalisation condition 

d Wg( W) = 1 (8.3) 

(8.4) 

and identical equations for IIp. Equation (8.4) is a consequence of § 6, point (iv), and 
the appendix: given E one chooses & ( E )  such that WmaX(&(&)) < E. Then any distribu- 
tion ( M ~ ) ~ = , , ~ , . . .  of loops with & > & ( E )  contributes only to g(W) for O <  W < E .  
Consequently 

& < & ( E )  

where the last identity follows from (5.2). Since the coefficient to 1 - 4 in (8 .5 )  remains 
finite for q +  1, (8.4) follows. 

Equation (8 .5 )  indicates that any expectation value with respect to g(  W) d W 
approaches its limiting value for q + 1 in a manner proportional to 1 - q. Thbis  indeed 
what we find for the moments Y, Y, and z, and for the second moment Y 2  of 11( Y )  
(see figure 7). 

It is not difficult to understand why for q + 1 only basins with vanishing weights 
W occur: equation (3.11) shows that in the thermodynamic limit the connection graph 
contains loops of all lengths, finite loops having vanishing probability. The very long 
loops, which can be information conserving for q + 1, split configuration space into 
very many tiny basins of attraction. The average length t of information conserving 
loops expresses this picture in a quantitative way: 

- -  

In (8.6) we have used IFIL = X, Q ( m ) m L  = q2/  L. 
diverges for q + 1 as does the susceptibility of a magnetic system, when the 

temperature approaches the critical temperature. 
Kauffman's model also has an order parameter analogous to a magnetisation. It 

is the relative size of the 'stable core', the latter being the subset of variables in a 
sample that acquire a value for time +00 which does not depend upon the initial 
configuration. Let us calculate its size s(00): the variables which after one time step 
acquire a value that they maintain thereafter, irrespective of the initial configuration, 
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are those that are updated with the constant functions ‘zero’ and ‘one’. Their relative 
number s(1) equals 1 - q :  

(8.7) s( 1) = 1 - q. 

After two time steps the relative number s(2) of variables having a value they will 
maintain thereafter, irrespective of the initial configurations, is 

s(2) = s( 1) + (1 - s( l))s( 1) (8.8) 

where in the last term 1 - s( 1) is the relative number of variables not stable after one 
time step, and the factor s(1) is the probability that such a variable receives its input 
from a variable stable after one time step, and thus becomes stable itself after two 
time steps. Let s(r) denote the relative number of variables which after t time steps 
have acquired a value which they keep thereafter, and which does not depend on the 
initial configuration. Then (8.7) and (8.8) generalise to 

s ( t )  - s ( t  - 1) 
1 - s(r - 1) 

s( t + 1) = s(t)+(l - s ( t ) )  (8.9) 

where [s( t )  - s( t - 1)]/[ 1 - s( t - l)]  is the probability that a variable becomes stable 
in the ( t  + 1)th time step by receiving its input from a variable that became stable in 
the tth time step. The unique solution to (8.9) is 

s( t )  = 1 - 4‘. (8.10) 

Thus we see that the size of the stable core is 

for q < l  
for q = 1. 

lim s( t )  = 
1-m 

(8.11) 

In analogy with magnetic systems we may say that Kauffman’s model with K = 1 
has a critical point at q = 1, with a diverging ‘susceptibility’ t and a discontinuous 
‘magnetisation’ ~(oo) ,  or better 1 - s(00). This behaviour much resembles that of 
one-dimensional magnetic systems. They share with Kauffman’s model with K = 1 the 
properties that they are exactly solvable, and the critical point is located at one extreme 
of the parameter interval, be it temperature, critical at zero, or q, critical at one. 

9. Finite N 

So far we have concentrated on the thermodynamic limit N+m.  In this section we 
consider finite networks. We do so both from a general interest in finite-N behaviour, 
and to obtain results directly comparable to results from numerical simulations of 
necessarily finite networks. 

Equation (4.1) gives Q ( m )  for any finite N. It differs little from its form in the 
thermodynamic limit, and the derivations of g( W )  and np(  Y p )  in 0 6 and their 
momenta in § 7 are unchanged in the case of finite N, except A s N must be satisfied. 
Figure 8(a)  shows the N dependence of F for various values of q. The case q = f was 
simulated numerically in [ 141 with results agreeing with the exact results presented 
here. The case of q = 1, critical for N =CO, may be compared with the supposedly 
critical case K = 2, q = in figure l ( a )  in [ 141. There it could not be decided whether 
or not F+ 0 for N + 00 because N = 240 was the maximum size system that could be 
simulated, and u2( Y )  remained finite, though it too should go to zero if F does. 
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1 10 lo2 Id 106 
N 

0 

Figure 8. ( a )  P as a function of finite network size N for q = 0.2 (A),  0.5 ( B ) 2 . 8  (C) and 
the case q = 1 (D) ,  which is critical for N = 00. ( b )  The variance U’( Y) = Y 2 -  Vz as a 
function of N for q = O . 2  (A), 0.5 (B), 0.8 (C) and the critical case q =  1 (D).  

Figure 8( 6) in the present paper shows that the problem in [ 141 could be that N was 
not sufficiently large. Figure 8(6) shows that, in the critical case K = 1, q = 1, U’( Y )  
first increases with N and then decreases to zero. 

Finally, figure 9 ( a ) - ( c )  show Yz,  Y3 and % plotted against P for various values 
of N and q. These figures should be compared with similar figures in [14] where the 
moments plotted against each other were evaluated by numerical simulation of the 
networks, and the parameters varied were N and K instead of N and q varied here. 

The figures are rather similar: in both cases the relationship between moments are 
close but not equal to the theoretical relationship obeyed by the Sherrington-Kirk- 
patrick model for spin glasses [24-261. We find a somewhat wider range of differences 
from the spin-glass result than was found in [14]. 

- 

10. Conclusion 

We have seen that the variables of Kauffman’s model with connectivity K = 1 fall into 
three classes: the first class is made up of the variables we have called ‘relevant’, the 
variables placed on ‘information conserving’ loops in the connection graph. The initial 
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Figure 9. ( a )  Full curves: Y 2  against p for N varying from 1 to CO (making ? decrease) 
and ~ 0 . 2  (A), 0.5 (B),  0.8 (C) and 1 (D). Outer broken curves represent bounds 
- Pz < Y 2  < p that are always satisfied. The central broken curve represents the equation 
Y 2 = f (  9+2pz) satisfied by the Sherrington-Kirkpatrick model [24-261. ( b )  p3 against 

Outer broken curves are bounds vz< p3< p, central broken curve the equation 
V3 = f p( 1 + p) satisfied by the SK model. ( c )  p4 against p. The bounds are P’ < p4 < e 
and the result for the S K  model p4 = f 8( 1 + p)(2 + P). 

values of the relevant variables are necessary and sufficient to determine the limit cycle 
of any configuration. The second class we have paid little attention to, because it 
consists of ‘dependent’ variables, variables which after a finite time describe limit 
cycles determined by the limit cycles of the relevant variables, and differing at most 
by a phase shift from the latter. These ‘dependent’ variables are placed on ‘information 
conserving’ trees rooted in ‘information conserving’ loops in the connection graph. 
The third class is the complement to the first two classes. It consists of the variables 
which after a finite time acquire a constant value which is the same for any initial 
configuration. The third class is called ‘the stable core’. Variables in it either receive 
input via constant functions, or have ‘ancestors’ in the connection graph that do so. 
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We found the stable core has measure one, except at a critical point, where it has 
measure zero. 

We have seen that a sample of the model with h relevant variables contributes to 
the probability density g(  W )  only in the interval Wmin(h) < W < Wma,(h) and to 
IIp( Y p )  only in the interval Wmin( m )  < Y p  < Wmax( m )  ‘ - I .  Since Wm,,( f i )  + 0 for 
h + 00, in any interval not including zero only a finite number of samples contribute 
to the values of g and IIp. They can therefore be computed exactly in such an interval, 
which we did for 0.0002 < W < 1 and 0.0002 < Y2 < 1. For the same reason, g and Ilp 
are sums of delta functions. 

We have used these results to describe a critical point, which is found to somewhat 
resemble the critical point at zero temperature possessed by one-dimensional spin 
systems. We have also described finite-size effects and maybe increased our understand- 
ing of finite-size effects at the critical point for connectivities K > 1 as well. Finally, 
we mention that Kauffman’s model with any connectivity has the property that the 
stable core is of measure one at the critical point and in the entire frozen phase [27]. 
The complement to the stable core forms an effective network with effective connectivity 
K ’ =  1. For this reason we believe that the exact solution presented here can be made 
the starting point for approximation schemes that may describe Kauffman’s model 
with any connectivity in the frozen phase and even slightly into the chaotic phase, 
with little modification. 
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Appendix 

Define 

where LCM(.  . .) means ‘least common multiple o f . .  .’. In this appendix we prove that 

S (  m) s 2””2 for m > 7. (A1 1 
For large values of m this inequality is far from saturated, but it suffices for our purposes. 

(A21 

Equation (Al )  follows from the fact that 

S (  m )  is an even number for m > 15 

and, as a consequence of this and direct inspection for 7 < m < 14, that 

S(  m + 2) s 2S( m) for m > 6 .  (A31 

Let us prove this last statement first: we observe that S (m)  is a non-decreasing 
function of m: let m = L1 + L2 + . . . + L ,  be a partitioning realising S(  m).  Supplemented 
with 1 i t i sa lsoapart i t ioningofm+l .  S o S ( m + l ) a L I L  ,... L, l=S(m) .  Nowlet 
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m = 2 k  + L,+ L3 +. . . + L,  be a partitioning of m realising S ( m ) .  We have assumed 
( A 2 )  to hold, so k 2 1 for m > 15. Define 

(A41 
L,+ L,+. . .+ L, = m - 2  for k = 1 

for k >  1. (2k-I + L,+ . . .+  L, = m -2k-I  

Then 

S (  m')  s S (  rn - 2 ) .  

From the partitionings of m' in ( A 4 )  it follows that 

S ( m ' )  > $ ( m )  

which, with (A5), gives (A3). 
We have not found a short proof of (A2), so we only outline the stages of our long 

proof. 
One can show that any natural number m has a partitioning into mutually prime 

terms realising S ( m ) ,  i.e. the terms of the partitioning have S ( m )  as least common 
multiple. This lemma is easily sharpened: all terms of the partitioning may be chosen 
to be powers of primes, the primes being different for different terms or equal to one: 

S( m )  = p:tp:2. . . p ;  

m < p : l + p t z + .  , .+p:aa (Ab) 

1 < p1< p2 < . . . < p ,  p t  prime number. 

k 

One proceeds to prove that either p 1  = 2 or k ,  = k2 = . . . = k, = 1 .  

Proof. Assume p 1  > 2 and k ,  > 2. Choose k,  such that 2ko-' < p ,  < 2k0. Then 

p ,  < 2k0 < 2p, .  

p ,  < 2k0 < p;t - p;1-1. 

(A71 

( A 8 1  

Since 2 S p ,  - 1 and p ,  S p t i - '  we have 2p ,  <p;l -p: , - ' ,  which inserted in (A7) gives 

From (A8) it follows that 

i.e. there is a partitioning of m which, instead of the term p " ,  has two terms 2b and 
p;1-', and which has a least common multiple of its terms that exceeds S ( m ) ,  in 
contradiction with the definition of S( m ) .  

Subsequently one assumes that 

S ( m )  =PI&. . . P n  

m S p l + p 2 + .  . .+pn 
2 < P I  < p ,  < . . . .=c p ,  p ,  prime 

and finds that the sequence p l ,  p 2 , .  . . , p n  contains all primes between 3 and p,. 

ProoJ Assume P , - ~  and p ,  are not consecutive primes. Choose a prime p such that 
p S p r  - 2  and p > max(p,-, , f p , ) .  Then p + 2 S p ,  while 2 p  > p , ,  i.e. if in (A10) p ,  is 
replaced by the two terms 2 and p a product larger than S ( m )  is obtained in contradic- 
tion with its definition. Now repeat this proof with pI-l  = 2 ,  pI = p ,  and find p ,  = 3. 
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Finally we prove p n  < 11: assume pn 2 11. Then 3 and 11 contribute to S( m )  with 
a factor 33. Another partitioning of m is obtained by replacing 3 + .  . .+ 11 . . . by 
1 + 22+ 3* +. . . which contributes a factor 36 > 33 to S( m);  again a contradiction. 

In summary: S ( m )  is even except for S(3)  = 3, S(8 )  = 15 and S(15) = 105. 
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